University of
Massachusetts

Ambherst
ECEG697AA — Lecture 21

Routers: Flow Classification Algorithms

Tilman Wolf
Department of Electrical and Computer Engineering
11/20/08

Packet Classification

= What is packet classification?

* Categorization of packets into flows
= Why do we need classification?

e Firewalling / NAT

* Quality of service

* Defenses against DoS attacks
= How does classification work?

* Flows are identified by multiple fields

Pavioad L4-SP | L4-DP |L4-PROT| L3-SA | L3-DA | L3-PROT | L2-SA | L2-DA
y 16b | 16b 8b | 32b | 32b gb 48b | 48b

“«———————— P>
Transport layer header Network layer header Link layer header

ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf

Packet Classification Example

= Example uses of classification

Packet filtering Deny all traffic from ISP3 (on interface X)
ISP, destined to E;.

5P,

= Policy routing Send all voice-over-IP traffic arriving from
NAP A \,,,-—-—--._ 7 E1 (on interface Y) and destined to E3

ISP. via a separate ATM network.
2/ & Router &

Accounting and Treat all video traffic to Eq (via interface Y)
as highest priority and perform accounting

" Example I’UleS: for the traffic sent this way.

. Traffic rate limiting | Ensure that ISP; does not inject more than
Flow Relevant packet fields 10 Mb/s of e-mail traffic and 50 Mb/s of

total traffic on interface X.

Email and from ISP2 | Source link-layer address, source transport
port number Traffic shaping Ensure that no more than 50 Mby/s of Web
traffic is injected into ISPy on interface X.

From ISP, Source link-layer address

From ISP3 and going | Source link-layer address,
to E; destination network-layer address

ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf 3

Packet Classification Example

= Rules with four dimensions:

Network-layer destination Network-layer source (address/ Transport-layer | Transport-layer | Action
(address/mask) mask) destination | protocol

R1 152.163.190.69/255.255.255.255 | 152.163.80.11/255.255.255.255 * * Deny

R2 152.168.3.0/255.255.255.0 152.163.200.157/255.255.255.255 | eq www udp Deny

RS 152,163.198.4/255.255.255.255 | 152.163.160.0/255.255.252.0 gt 1023 tep Permit

Ré 0.0.0.0/0.0.0.0 0.0.0.0/0.0.0.0 * * Permit

= Classification results:

Packet | Network-layer destination | Network-layer source | Transport-layer | Transport-layer protocol | Best matching rule,

header destination action

P 152.163.190.69 152.163.80.11 Www tep R1, deny
P2 152.168.3.21 152.163.200.157 WWW udp R2, deny
P3 152.168.198.4 152.163.160.10 1024 tep RS, permit

= Descending rule priority (by convention)

ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf 4

Geometric View of Rules

= |llustration of rules on 2 fields:

Rule | F1 F2
111
R 00* | 00* P
Rz o* 01* < i@
Ra | 1% | 0% RS R6 101
Rq 00* | 0*
Rs | o+ | 1% 100
Re g o
011
= Complexity of locating R oo
point in N rectangles R3
¢ O(log N) time and o 001
O(NY) space
+ O((log N)&-1) time and 000
O(N) space 000 010 100 110
001 011 101 111
ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf 5

Complexity of Packet Classification

= High-dimensional problem
e Typically 4+ fields considered
= Overlapping rules
* Rule order needs to be considered
= Range matches
* Can be decomposed into multiple prefixes
= Number of rules
* Order of thousands
* Typically not as large as number of prefixes
= Performance constraints
» Classification at line speed for every packet
* Memory limited to few Megabytes

ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf 6

Classification by Linear Search

Match packet against rules in order of priority
e First match is highest matching rule

Space: O(N)

* Simple list of rules

Time: O(Nd)

* Linear growth with number of rules

Simple, but poor scalability

ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf

Classification by Hierarchical Tries

= Use d-dimensional hierarchical trie
* For each dimension use prefix trie as for lookups

* Search F1-trie and recursively F2-trie on next tree pointer

= Search: (000,010)

Rule | F1 F2

R, 00* | 00*

Rz 0* 01*

Ry 1% | o*

Ra 00* | 0%

Rs 0* 1*

Re | * 1*

= Space: O(NdW)

F1-trie

D

F2-tries

= Time: O(WY)

ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf

Classification by Set-Pruning Tries

= Avoid recursive search by replicating rules
e Search F1 for longest prefix
e Continue to F2 and search for longest prefix

= Search: (000,010)

Rule | F1 | 2 Search path Fl-trie
R, | oo* | oo

Ry 0* | o1*
Ry 1* | o*
1 F2-tries
Ra 00* | 0* . 0
Rs 0* | 1* .ﬁ}. R6
Rs * (s
= Space: O(N4dwW)
= Time: O(dW)
ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf 9

Classification by Grid-of-Tries

= Attempt to store rule only once and use pointers
* “Switch pointer” switches F2-trie

= Only possible if

e Bit string within F2-trie
is identical for w and x

* Node w and node x use
same prefix component
from F1

¢ w does not have child
e s s closest ancestortor

= Space: O(NW)
= Time: O(W)
= Works only for 2D

F1-trie

F2-tries

ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf 10

Classification by Grid-of-Tries

= Example of grid-of-tries
= Search: (000,010)

Rule | F1 F2
R, 00* | 00*
R2 0* 01*
Ry 1* 0*
Ra 00* | 0
Rs o* 1*
Rs * 1*

ECE697AA — 11/20/08

Search path

1 F1-trie

_)1\‘ e 1
'
F2-tries

R6

UMass Amherst — Tilman Wolf 11

Classification by Cross-Producting

*= Rules are partitioned into ranges in each dimension
* Cross-product table contains best matching rule
* All possible range combinations precomputed

= Lookup
* Find range in Cross-product table
each dimension ntoon " :
111 1,0 R1
* Ranges are index i 110 E?w :22; R2
into cross- r? RS Ré 101 e
(ry1.r33) R5
product table 100) —
= Space: O(N9) w2l R | | R
. 010
= Time: O(dtg,) RS
RL 1 001
' | R1 (ry3.r31) R3
= Good for small, 000 (aon [R
static classifiers 990001%1911 1401 %441 “orp) | RS

ECE697AA — 11/20/08

UMass Amherst — Tilman Wolf 12

2D Classification Scheme

= Restrictions on rules:

e 1st dimension prefix

e 2nd dimension arbitrary range
= Search: (011,110)

Rule | F1 F2

Ry 00* | 00* _ F1-trie
Ry | 0% | o1*
R, | 1% | o
Rs | 00* | o*
Rs | or | ™ [000, 001, 011] |o10,011,106,\111| [100, 111] [000, 011
N . - - - - -
Rs 1 R1 R2 RS R6 R3
R4

= Space: O(NW)

= Time: O(Wlog N)

ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf 13

Classification by Area-Based Quadtree
*= Area-based quadtree (AQT)

* Four children represent
guadrants of 2D subspace e | N

= Search: (001,010)

Rule | F1 F2

R 00* | 00*

Ry 0* | 01*

Ry 1% | o*

R 00* | o*

Rs 0* 1*

Rs | * 1%

SWHOH SE(11) -
111
p
. 110
RS R6 101 Search path {Re}
100
011 D)
- o3 {R2, RA} @
010 X {R3}
001 g
R1 TR
000
000 010 . 100 __ 110
001 011 101 111

= Space: O(NW)
= Time: O(W)

ECE697AA — 11/20/08

UMass Amherst — Tilman Wolf

14

Heuristics

= Solutions to classification can be expensive
¢ Worst case analysis

= Classification rules in real networks not worst case
* Rules structure and redundancy

» Heuristics can exploit structure and redundancy
* Possibly really bad for theoretical worst case

ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf 15

Recursive Flow Classification

= RFC repeats mapping of multiple fields into one

¢ Index into tables decreases
with each phase

+ Complex construction of T Q__““:o
tables =
= Performance e Oﬁj};o
* 1600 rules work . P P 1 e P

* Space increases significantly
for 6000 rules

¢ 10Gbps in hardware and
2.5Gbps in software

ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf 16

Hierarchical Intelligent Cutting

= HiCuts uses tree structure

e Space partitioned into subspaces (e 1 | |
* Leaf nodes contain small numbers of rules 8, | oo | oor
e Sequential search of rules ; ? :‘
*= Tradeoff between space and query time n | oo | o
Rs o ™
= Performance o :
* 1700 rules
111
* <1MB g 110
e <20 memory RS R6 101
accesses 100
R 011
R3 010
R1 001
000
000 010 100 110
001 011 101 111
ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf 17

Tuple Space Search

= Length of prefix in each rule determines tuple

* Multiple rules with same tuple can be stored in hash table
» Same size prefix for all rules within that hash table
e Search is exact match operation on table

= Space and time good for average case

* Nondeterministic time due to hashing
e Could become bad for some cases

Rule Specification Tuple Tuple Hash table entries
R1 (00*,00%) (2,2) (0,1) {R6}

R2 (0%%,01%) (1,2) (1,1) {R3.R5}

R3 (1%%,0%%) 1,1) (1,2) {R2}

R4 (00%,0%%) 2,1) (2,1) {R4}

RS (0%, 1%%) (1,1) (2,2) {R1}

RE (#%% 1%%) (0,1)

ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf 18

Hardware-Based Algorithms

= Some hardware components exhibit useful features
¢ Content addressable memories (CAMs) allow O(1) search

= Classification by Ternary CAMs (T-CAMSs)

e Prefixes stored as value and

mask

* Priority encoder picks one of
multiple matches and yields
index to action memory

* Fast, but expensive and

power hungry

ECEG697AA — 11/20/08

Memary | i 1 2

Destination
address

Memary
array TCAM

Matched: 0 1 0

\

l 1
Priorit;
encoder

Memory
location

Action RAM
memory

Next hop

UMass Amherst — Tilman Wolf

19

= Performance
overview:

* Many algorithms
perform better
in average case

ECE697AA — 11/20/08

Summary

Algorithm

Worst-case time
complexity

Worst-case storage
complexity

Linear search N N
Ternary CAM 1 N
Hierarchical tries W NdWw
Set-pruning tries dw Nd
Grid-of-tries -1 NeW
Cross-producting dw Nd
FIS-tree o+ 1w I x N1+
RFC d nd
Bitmap-intersection | dW + Nfmemwidth dh2
HiCuts d Nd
Tuple space search N N

UMass Amherst — Tilman Wolf

20

10

Homework

= Read:
¢ Kurose & Ross: Chapter 7.5

= SPARK
* Assessment quiz

ECE697AA — 11/20/08 UMass Amherst — Tilman Wolf

21

11

